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ABSTRACT

The purpose of this survey is to introduce the diffusion model. We will first introduce the basic
concepts of DDPM, and then introduce some developments based on DDPM, including DDIM and
the condition diffusion model. We will be writing using symbols customary to the mathematics
department.
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1 Introduction

Diffusion Probabilistic Models (DPM, or Diffusion Models) were first proposed by Sohl-Dickstein et al. (2015).
We will focus on the DDPM (Denoising Diffusion Probabilistic Models) (Ho, Jain, and Abbeel (2020)). We will also
introduce some developments based on DDPM: including DDIM (Denoising Diffusion Implicit Models) (Section 2.4)
and the condition diffusion model (Section 2.5).

The history of generative Al is rich and multifaceted, dating back several decades. Initially, generative models were
relatively simplistic, but advancements over time have led to the development of more sophisticated techniques. One
of the earliest breakthroughs in this field was the introduction of the Variational Autoencoder (VAE) (Kingma and
Welling (2022)). VAEs employ a probabilistic approach to model the distribution of data, allowing for the generation
of new, similar data points by sampling from this distribution. Following VAEs, Generative Adversarial Networks
(GANs) (Goodfellow et al. (2014)) revolutionized generative Al by using a game-theoretic approach, where two
neural networks—the generator and the discriminator—compete in a zero-sum game, resulting in the creation of
highly realistic data.

Diffusion models are a newer addition to this landscape and have shown remarkable promise. These models work
by simulating the diffusion process, wherein data points are progressively transformed from a simple distribution
(like Gaussian noise) to a complex data distribution. Notable types of diffusion models include Denoising Diffusion
Probabilistic Models (DDPMs) and Noise-Conditional Score Networks (NCSNs). DDPMs iteratively refine noisy data
points until they resemble the target distribution, whereas NCSNs use score matching to model the gradient of the data
distribution, which guides the generation process.

Recent developments in diffusion models have focused on enhancing their efficiency and quality. Innovations such
as improved noise scheduling, hybrid architectures combining features from VAEs and GANSs, and advancements in
training techniques have all contributed to the rapid evolution of diffusion models. These advancements have enabled
diffusion models to generate data with unprecedented fidelity and have opened new avenues for their application across
various domains, including image synthesis, natural language processing, and beyond.

In summary, diffusion models have emerged as a powerful tool within the generative Al toolkit. Their ongoing devel-
opment promises to further push the boundaries of what is possible in data generation, offering exciting possibilities
for both research and practical applications.
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Next, we introduce the basic concepts of DDPM.

2 Background

The diffusion model consists of two main parts:

1. Adding Noise (Forward Process): We gradually introduce independent noise to the starting image until it
becomes pure noise.

2. Denoising (Backward Process): Beginning with pure noise, we use the current image to estimate what the
previous image looked like. Repeating this process step by step, the final output image is our generated
picture.

TODO: #

We use mathematical formulas to describe the above statement. Given 7' € N. Fix constants «,, 5, € (0.001,0.999)
fort = 1,2,---,T such that o, + 5, = 1. We set the following random vectors of R™ (note that here we only have
random vectors and not probability measures):

* X,: The initial image.
* &, t=1,2,....T: The noise added in step ¢.
o X, = /o, X, ; ++/Bi&, t=1,2,--,T: The image in step ¢.

To have the concepts of independence and noise, we need to have probability measures. In the following text, we use
lowercase ¢(x) to denote the density of a probability measure Q corresponding to the random variable X . Others (e.g.,
q(z,), pg(x,)) are the same (p, corresponds to P,). We also use g(x;) to denote the density of (X, X7, -, X,) :=
X, for the probability measure Q. Others are the same.

Suppose ¢yani(Z) is the density of X; we want to pursue. We do not know what g, (x,) is. We only have some
eligible images (discrete data) with mass function ¢(z,). When this discrete data large, ¢(zy) & Gyan (o) in some
sense of distribution. Our goal is to find a density p(x,) of X, such that p(zy) & Gyu(Zo) in some sense of
distribution.

2.1 Forward process
TODO: Notation

In the forward process, we add noise independently to the image. Note that adding noise independently is equivalent
to the Markov property (see Section A.1). We define the forward process ({ X, -, X1}, Q) as a Markov chain with

* the initial density ¢(z), and
* the transition density

q(@ylz,y) = N(Voym,_q, BI).
By the Markov property, the joint density of (X, X;_4,-, Xy, X|,) for the forward process (or we say under Q) is
a(z10) = q(zr|zr_y) - q(@r_y|Tr_o) - a(zy|zo) - a(20).
Recall that X, = /&, X, 1 + \/B;&,. Then under Q, £, ~ N'(0,1) and

Xy, €1, &4, -+, &, are independent

(see TODO: appendix). Define a random vector &, by

Xt:@XO+V1_at'gtv (D

where @, = a;-a;_; -+ ;. Thenunder Q, &, | X, and &, ~ N (0,T). This implies that X - converges in distribution

to V(0,I) under Q for T large. Equatlon 1 is a important relation between X, and X, and the noise &,. For example,

if we have an estimator of &,, say &,, then by this relationship, we have an estimator X0 = XO (Xt, & ) of X, satisfies
the following:

X, = Va5 X, +/1-a,-&,. )

We will use this relationship when we reparameterize our model.
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2.2 Backward process

In the backward process, we remove the noise according to the current image. This can also be described by the
Markov chain. Ideally we define the backward process ({X, X, ,-+, X, X}, P) as a Markov chain with the
initial distribution p(z,) = N(0,I) and the transition density p(x;_;|z;) = ¢(x;_1|z,). In this assumption, we have
p(zy) ~ q(z,) in some sense of distribution (see TODO: appendix). We may sample =, ~ p(z) by the following:

 Sample z ~ N(0,1).
* Sample x;,_; ~ ¢(z,_;|z,) inductively fort =T,7 —1,--, 1.

However, there is a problem with the sampling above. Although from the properties of conditional density, we have

q(xy_q|zy) = % (@], _q).

It’s not easy to use this formula to sample x;, ; ~ ¢(z,_;|z,) through code since the expression of g(z,_1)/q(x;)
may be complicated. The way to solve this problem is that we assume there is another probability measure P, which
is our model and can be sampled through code. There are several methods (SDE or just Taylor’s theory, see TODO:
appendix) to show that we can approximate ¢(x,_; |x,) with a normal. Hence, we construct P, such that

po(x4|7y) = N(%ﬂ% po(z4, 1), 29(%7”)7

where /145, ¥, is what we need to give. A way to construct Py is that we consider ({ X, X 1,-, X, Xy}, Py) isa
Markov chain with

* the initial density py(z,) = N (0,I) and
* the transition density

Po(we1]xy) = N (15 pg (4, 1), D4, 1))
The joint density of X, (under Py) is, by the Markov property,
po(@o.r) = Po(@o|®1) - Po(@1|22) -+ Po(@p 1 |27) - P(2T).
We can sample x, ~ py(z) by the following:

 Sample z; ~ N(0,1).
» Sample z, 4 ~ py(x,_4|x,) inductively fort =T, T —1,---, 1.

Now our goal becomes to optimize 6 such that py(z,) = ¢(z,) in some sense. A common way to measure the
difference between p,(z,) and g(z) is the KL-divergence

Dy (q(z9)llpe(zo)) = —/ , q(xg) log 2;9((500)) dz,.

By the definition of the KL-divergence,

ty, Xy = arg mizn Dy (q(z0)|[pa(20))
Hos2i0

= arg mip (— / q(mo)log(?((foo)))d%)

— arg min (- / oy log pe(xo)dxo)

Ko Eg

[Xowq(moﬁ[_ lnge(X(J>]
Through the evidence lower bound(ELBO),

po<Xo:T) o
[EXONq(:L’O)[_ log pp(Xy)] < [EXO:TNq(:ro:T) {— log m} = L.


https://en.wikipedia.org/wiki/Kullback–Leibler_divergence
https://en.wikipedia.org/wiki/Evidence_lower_bound
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Our goal becomes to minimize L. We separate L into three parts (for details, see TODO: appendix):

L = Exymginy | D aarleg o)

Ly

l‘o—XO:|

T
+ Z [EXO,Xth(zo,wt) |:DKL ((I(T/tq |, T/())Hpe(mtq |$t))

t=2

107zt_X0’Xt:| (3)

Ltl

+ [EX[):X1’VQ(930"E1) |:_ logpg(l“o\%) To,7;=X X1:| .

Lo

¢ The first term L, controls how similar is the last image of the forward process to the pure noise. L, can be
calculated directly since both g(zp|zy), p(zy) are normal. The value is

1 B 1 ap
Lr=35 (1og(1 —ap)+ n( T, 1) + ﬁ[EXONq(mO)[

x07%).

It is clear that lim4_, . L, = 0. From the above formula, depending only on the L?-norm of X,, L, can be
smaller if we shift X by its mean. For the question of how to choose the size of T', see Franzese et al. (2023).

* The second term L, ;,t = 2,---,T, is the most important since it determines how to choose 4, 2. This
term controls the similarity of X, ; in the forward and backward process. By Bayes’ rule and after a long
calculation (see TODO: appendix),

q(zq|vg, 20) = N(@yoys (24, 70), 8y),  t =2, T,
where . B
vag(1— at,l)x N w/atflﬂtm 5 = 1—a,_,

- t - 0> b -
1—a, 1—-a 1—a,

Byl “4)

H’t(xta IO) =

2.2.1 To determine X, for t > 2

Since both q(z,_; |z, zy), Pg(z,_1|x,) are normal, it is natural to choose
-3
So(a,1) = B, = L1 = oL 5)
11—,

2.2.2 To determine 1, for ¢t > 2
By the choice of ¥, we have

1 2
Ly 1 =Ex, x,~q(zg.2,) [T‘_%Hut(Xt?X(]) — pp( X, )| }

1 2
=L Xo~a(xg),E,~N(0,1) {ﬁ”ﬂ’t(XwXO) _Ne(Xt»t)” }
X,E& are independent t

X =@, Xo /T, &,
Then we reparametrize yy by
pro (X, t) = #t(Xty)?O)v (6)
where 5(\0 = )?0 (X,) is the estimate of X, via our model by giving X, (we will give the details of X\O later
in Equation 8). With this parametrization and by the expression of p, in Equation 4, we have
Ko Xo) = o Xert)] = YL, = Rl 9

Let Nety : R™ x {1,2,--,T'} — R" be our neural network (with parameters ¢) we need to train. We can
choose Net, to predict X, or &, or the velocity V;, (see Hang et al. (2023)). DDPM chooses to predict the

noise &,. That is, we use Net,(X,,t) to be the character of &, in Equation 2 and then we have the following
relation N
X, = Vo, Xo(X,) + /1 —a, - Nety(X,,t). (8)

4
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Note that X, = X,(X,) = X,(X,,6). Hence, we have

g :
= nygugtwon (e st )
~q(zg),E,~N(0,I) 2 e t o\ N5
)?0 Er a(;e infiependent 20 at(l at)

X, =va, Xo+/1I-a,-&

* For the third term L. Recall that we assume py(zq|z,) = N (x; po(zq,1), Bg(xq,1)). For convience (see
Equation 5), we choose ¥,(x;, 1) to be a constant matrix indepdent of § and =, e.g.,

Yo(xq,1) = g1 := 071
Note that

1
—logpy(zp|7y) = TﬂleO — pg(xy, l)H2 + const,

where const is some constant independent of (x, z,, ). Here we also reparametrize y, by Equation 6 for
t =1 with o, := 1. In this setting,

po(Xq,1) = Nl(leX\o(Xﬁ) = 5(\0<X1)~

To maximize

LO = [EXO»X1NQ(101II> |:_ 10gp6(w0|w1) zo,2,=Xg,X :|
01 =201

is equivalent to maximize

/ 1 5% 2
Ly = Ex, x,~qlzg.2,) {251”)(0 — Xo(X) }

Hence, if we use the same assumption from Equation 8, our goal is to minimize

/ 1l—«a = 2
Ly = Ex, x,~q(z.2,) [2510411“)(0 — Xo(X)|| }

B7 - 2
=t Xo~q(x9),E,~N(0,T) m“gt - Net9<Xt7 t)H

X,&, are independent

Xo=va@ Xo+y/1-a, &,
witht = 1.

2.3 Training and Sampling
Note that we minimize E v, [fo(X)] by repeating the following:

 Sampling z ~ ¢(x) and then
* minimizing f,(x) by taking gradient descent on 6.

Recall that fort = 2,3,---, T,

B 87 = 2
Lt =L xng(eg)zn0D) (Wl%)ugt - NetO(Xt’t)H :

X,E are independent
X =V, Xg+/1-a,-&,
simple

DDPM chooses a simple version that minimizes L,_; , ignoring the weights in the expectation:

2
imol _
Lilinlpe =L Xowg(rg),gtNN(O»I) <”‘St - NetO(Xt>t)H )

X,E are independent

X,=va, Xo+/1-a, &,

Ly, is the same. Therefore, our training algorithm is as follows:



A PREPRINT - JULY 22, 2024

Algorithm 1 Training (DDPM)

1: repeat
2: t ~ Uniform({1,---,T}) > Sample random step
3: xo ~ q(zy) [> Sample random initial image
4 g, ~N(0,1I) > Sample random noise
50 x, = ar,++/1—a, &

2
6: Take gradient descent step on Hét — Nety(z,, t)H [> Optimization

7: until converged

For the sampling, we may sample x, ~ p,(z,) by the following:

 Sample z; ~ N(0,1).
» Sample z,_; ~ py(z,_4|x,) inductively fort =T, T —1,---, 1.

Recall that py(z,_q|x;) ~ N (ug(z,,t), 0,1), where

1
/LO(J:N t) = (xt - ﬁt Net@(xta t))

V1—a,

Therefore, our sampling algorithm is as follows:

Algorithm 2 Sampling (DDPM)

1: I'TNN(07I)
2: for t=1T,---,1do

3: if ¢ > 1 then

4 z ~ N(0,1)

5 else

6: z=0

7 end if

8: Ty g = \/}Tt(:cf — \}%Nete(xt,t)) + 0,2
9: end for

10: return z

24 DDIM

One of the major drawbacks of DDPM is the lengthy time required for data generation, especially when compared to
other generative Al methods. In response to this issue, an improved version of DDPM, known as Denoising Diffusion
Implicit Models (DDIM), was introduced by Song, Meng, and Ermon (2022). The primary innovation of DDIM is its
ability to significantly accelerate the data generation process. By refining the underlying diffusion mechanism, DDIM
reduces the number of required diffusion steps without sacrificing the quality of the generated data. This breakthrough
makes DDIM a more practical and efficient alternative for generative Al tasks, offering faster performance while
maintaining high-quality outputs.

Now we introduce the DDIM. The main reason why we can decompose L in Equation 3 in DDPM is that we have the
following production of two densities:

~

po(Tor) = Po(2r) - Hpe(xt 112¢) - po(zolz1),

(€))

T
q(21.7]T0) = q(27|20) Hq Ty 1|2y, Tg).-
t=2
DDIM consider a new forward process ({X,, X;,, X7}, Q, ), where Q,, is some probability measure indexed by
€ [0,00)T. The forward process is not a Markov chain but has the same conditional density of X, given X, = x,
for each ¢t as DDPM. Inspired by Equation 9, DDIM directly defines the joint density
T

4o (To.r) = g, (Tp|20) - an(‘rtfl‘xhx()) -q(g),
=2
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— — Ty — /g
Qo (1, |2, 20) = N /@29 + /1 — @, —o0F - LD
1o (T |24, @) < t—1%0 t—1 t ﬁ
Note that g, (zy.r) is a density since it is a product of densities. This seems a little weird that the joint density
of ¢, (zo,) is determined by some conditional density. In fact, ({X,, X;,-, X7}, Q,) is a process satisfying the
following conditions:

, ?I> t=2-,T.

1. Under Q,, X, has the density ¢(x).
2. Conditioned on X, = x, the process ({XT7 Xp_q,, X, Xl}‘ Q(,) is a Markov chain with
Xog=xg

* the initial density g, (z|z) = N (Varzy, (1 —ap)I) and
* the transition density

— Ty —VUTy o
4, (T 1|2y, 20) ZN(\/atle—i— 1—a, ,—o0?- yoi L), t=2,-,T.
\/lfat

Note that if we write g, (2, 1 |z;, z) = N(f(z;, 24, t),071), then the process

({XTaXT717"'7X27X1 an)
Xo=z¢

can be write as, conditioned on X, = z,
X, =X, xg,t) + 0,8, t=T,-,2,

where X, & 1,&1_o, -, & are independent under Q.

For each o € [0, oo)T, we can show that for this joint density ¢, (xo:T)7
qU(IO) = Q(mo)
0o (4|T0) = \Fﬂﬂo, (1—a)I) = q(z;]zy), t=1,-,T.

DDIM consider the backward process ({ X, X1, , X, Xy}, Py) as a Markov chain with the initial distribution
po(xp) = N(0,I) and the transition density

po(xolay) = N(Zo(29,1), O—%I)a

P |7y) = @y _y|24, Tp)

—Va,z
:N(\/atli’o—i— l—@, , —o2. Y 10 O’?I), t=2-,T,
\/1fat

where z, = Z,(x,,t) satisfies

Ty =\ Q- To(xy, t) + /1 — @ - Netg(ay,t), z€R" teN.

By the constructions of g, py, we still have the decomposition

po(Xor) ]
-

[EXO:TNqU(mO:T) {_ 08 q (XI-T|XO>

T

+ Z [EXO,XthG(:co,wt) |:DKL (qg(rtﬂ |, T/o)Hpe(xtfl |33t)>
t=2

~ Ex e | Do (sl o)

Ly

foazt_X07Xt:|

Ltl

+ [EX07X1NQU($0’$1> |:_ logp9($o|$1) Tg,x,=Xg X1:| .

Ly

There are two special values for o.
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¢ The first one is

o, =vV(0—a_)/1—a)\/1—a, t=1,-,T.
Under this o, the process ({X,, X1, , Xr}, Q,) becomes a Markov chain and the DDIM becomes the
original DDPM.

* The second one is o, = 0 for t = 1,2,---, T In this case, the backward process ({ X, Xp_1,-, X}, Py)
becomes deterministic when we condition on X = z;. This greatly speeds up the sampling of diffusion
models. In this case,

Ty — /0T
q (‘Tt 1|1'f,I0 <\/at 1I0+\/1 t\/ﬁo ) 0)
Bt

1—a,
:N<(‘ryt_1_fa )xo P, o)
V t \/ t
1

— 1—-a,
po(@y |my) = N \/T»txt + ( IL—a q— W) “Netg(zy,t) , 0.
2.5 Conditional Diffusion Model

Dhariwal and Nichol (2021)

o — X% R IR AR By diffusion model, & PT4E ik 5 5 1 48 A Rk BN R VT o 35 B B AR O U R P EY R K
P s #E mnist 2, A48 g%%‘”%]iﬁi 0~9 = H T X‘Hﬁﬂﬁﬁ celebA LQHEKEF, &
1?3?5%%%52%?(@@%‘&%%& (thimst 2 F 24, AEARRSE) . rLBERTARAEHTEN

Conditional diffusion model.
o RPLAMEHAGRAE, A mnist WHT MR RMAREFEHE X XY 2
Q(zg,y), w9 € RV, yeR”,
where

- X, R¥FEF;
- Y Z#HF label Z£ R" ¥ embed
# That is, R™ is the embed space of labels.
+ For this example, 0,1, ---, 9 are nn . Embedding (10,n) (torch.arange(10)). (FfLLiE # embed
R EEEmW) .
* Given the label Y = y. We want to generate an image x, which has the label y.

* Assume that we already have ¢(y|z). That is, when we have z,, we know the distribution of labels of z,.

WRAME Y, RE X,, 7 L% Z 1l 8 unconditional diffusion model
* We define q as before:

— q(z): the distribution of X, (£& % 3 X);
= q(@fz, ) = Nz, o, (1 —o)T).

2.5.0.1 Important

o FIARHAAMIA (X, 2 BeR ¢ e o B, R 2R AR T
Define the forward process of (X1, Y) by the following:
= q(zg) = qlxg) (FEFER) (eq 28).
« So that we have §(x,y) = q(zq) - q(ylz,) -
BREA FEEX
= q(ay]zy g, y) = gz, ) CARER) (eq 30);
= q(@17|20:y) 1= Hil q(xy|zy_q,y) (eq 31).
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* Conditioned on Y = y, the forward process X, Xy, -+, X is a Markov chain with the transition
density g(x; |z, _q).

Note that R R .
q(xo.r,y) = q(xg,y) - (%T‘xo’ Y),

q(zo,y H (@¢|z1,y

t=1

S~

* For this ¢, we have

- q(zy|wy ) = q(xy]xy_q,y) (eq 32~37) = q(x|x, ;) (eq 30);

- q(z1.rlTo) = q(@1.7|20) (BQ 38~44);

- q(z;) = q(z;) (eq 45~50);

- q(zyq|zy) = g2y q]7y);

- (EE W ESR A § £ 7% K label B, R 22 71 89 diffusion model ¢ - &4 —1K);
= @l 7) = q(ylz, ) (6q 51~54);

= Q@ alzy) = alw |z - dyley) [ dyle,) @4 55-6D).
~pg(Ty_ql|ry) ~py(yle, 1) constant
# Note that p (ylz,) 7 py(ylz,, t) B4 E.
* Note that py(z,_; |xt),p¢(y|xt71) is our model.
- B AR DAGE R B AR AR B9 py (MK DDPM #y) Fo 48 2.
— Define py (v, |z;,y) = constant - py(x,_1|z;) - Py (y|7,_1). So when given the label y, we sample z,
(with label y) by the following:
* Fort=T,T—1,---,1,
- Sample z; ~ py 4(7, 1|2, y)
+ EndFor

We organize the formula py ,(z; 4 |, y). Consider z,,y as two given constants. Using a Taylor expan-
sion at z,_; = p (some constant), we have

+ (2421 — WV, logpg(ylz, 1)

T 1=H Ty 1=H

10gp¢(y|xt—1) ~ 10gp¢(y|$t—1>
= (¥, — p)
2.5.0.2 Sampling (DDPM with classifier)

Given: 9|44 py(z, ,|r,) (DDPM) F 2415 p, vz, 1)
* Input: A label y and a gradient scale s € (1, 00)
* Sample z ~ N(0,1).
e Fort=T7,T—-1,---,1
= 1,3 (), Xg(y)
- Sample z;,_; ~ N (p, X
x Comment Sample from unconditional diffusion model
- Ty <z + 88V, logp,(y|z,)

+ Comment ﬁgﬂ%;zﬁf Po.¢(, 1|z, y) B gradient ascent, 3 fm y B9 log-likelihood. 7% z, ,
1] label y ¥4 77 1] ] .

¢ EndFor
* Return z

2.6 Predict Velocity
We have two predictions in the following.

* The first is to predict the initial image X, by giving X,. We set
pro(xy, t) = by (xtv NetQ(xtvt))

_ \/OTt(l_atfl)x V01

B 1—-a, o F 1—a

‘Nety(z,,t), =z, €R", t=2,---,T,
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and then
Va1 By

ry, — Net m,t”.
T o — wety(wist)

e 20) = po(,, )| =
* The second is to predict the noise €, by giving z,, t. We set
oy, t) = fiy (mt’ Nety(z,, t))

1
= —(:z:t - L .Nete(xtvt))’ z, €RY t=2,T,
Vi

1—-a,

and then
HEt — Nety(zy, t)H

itz =t = e

In the backward process, we predict the noise &, or the initial image X,,. There is another prediction (prediction for
the velocity, see TODO: pred_v). For simplicity, we set

a; = \/a: b, :=+/1—1,.

X, =a,Xy+ btg“ a? + bt2 =1.

Define the velocity, a random vector we want to predict,

Then we may rewrite

Vi = =b X + 0,8y

Then we have the following relations:
Xo = a,; Xy = b,V

&, =b,X, +a,V,.
Then our algorithms become

1. Training
* x5~ q(z)
e g, ~N(0,1)
* xy = axy + biEy
v, = —bxy+ a, &,
2
* Loss is |[Nety(z,, 1) — v

2. Sampling
o U =Nety(zy,t)
s E=bx, +a,0, To=a,x,—b0
o i 1 B: )2
=52 — sz 3

3 Experiments

4 Conclusion

10
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A Appendix

A.1 Markov property is equivalent to adding noise independently
Given the probability measure Q such that

* q(x,) is the mass (respect to Q) of our image data, and
* Xy,&4, -, Ep are independent under Q, and
o &, ~N(0,I)under Q fort =1,--,T.

Under the assumptions above, we have the following properties under Q:

¢ Under Q, if we set B
X, =a,X,++1—a,- &,
then X, &, are independent, and £, ~ N'(0,1). Note that this property says that ¢(z,) ~ N (0,I) as T
large.

* Under Q, {X,, X;,-, X1} is a Markov chain with the transition density
q(@ylz,y) = N(Voyw,_q, BI).

Remark. Note that the Markov property is equivalent to adding noise independently. That is, if ({Xt}tTZO, Q)isa
Markov chain with the transition density

q(z|zyq) = N(\/OTtxt—lvﬂtI)'

Xy = @XO+ Vl_at'gta

and we set

then

* Xg,&q,, Ep are independent under Q, and
* &, ~N(0,I)under Qfort=1,-,T.

A2 q(zy) ~ p(x)

Note that
q(z0.3) = q(w3]79) - q(@3|27) - q(21]70) - 9(T0)
= Zgz;qmzxs) : ZZT;Q(%%) : ZZ;;Q(%%) ~q(zg)
= q(xglzy) - q(71]75) - q(25]23) - ‘@
~N(0,I)
and
P(Zo:3) = q(zol71) - q(71|22) - g(25|23) - P(23)
N(0,1)
Then
o) = [ o) drog ~ [ plng) drog = ploo)
A.3 SDE

Suppose that (X, ) (o1 satisfies the SDE
dX, = p(X,, t)dt + o(X,, t)dB,,

where p(-,t) : R" — R" and o(-, ) : R" — R™" and (B,);¢[,1) is a standard n-dimensional Brownian Motion.
Let (-, t) be the density of X, for each t € [0, 1]. We have the following results:

* Fort € [0, 1], we define

yt =X 4 q(,t)
ﬁ(,t = lu(,l—t), E(,t) = O'(,l—t)
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Then by Anderson (1982), the reverse process (X, ),c(o 1] satisfies the following SDE:

aX, = (=X, 1) + 57X, )7(X, 1)V, 10ga( ) + Voo (X, (X))t
drift coefficient ( 1 0)

+ o(X,,t) dB,,
_
diffusion coefficient

where (B, )c(,1 is a standard n-dimensional Brownian Motion.

— Note that the diffusion coefficient of the reverse process (X,) has the same form as (X;)c(o,1)-

tel0,1]
This explains why it is reasonable to assume that X4 (x, t) is independent of « in Equation 5.

- If o(-,t) = o(t) is independent of z, then V5 (X,,t)7(X,, t)T = 0 and the drift coefficient of Equa-
tion 10 is the original average —i(X,, ) guided by the score function V, logg(X,, ).

~

» Consider a process (X),¢(o, 1] satisfies the ODE

~ ~ 1 ~ ~ ~ 1 ~ ~

dXt = (/J’(Xta t) - io(Xh t)U(Xt7 t>TV:1: lOg Q(Xm t) - §vzo-(Xt7 t)U(Xtv t)T)dt
Then for each ¢ € [0, 1], X, and 5(; have the same distribution.

A4 Seperate L

— Pe(Xo.r)
Li=Exyr~atwor) [* log (X X))

T
Po(To.r) = polwr) - Hpe(xt—1|xt) “po(Tolz1),

=

q(17|70) = q(xy|wy_y) - q(2q|0)

~
|l
()

1
i

q(wy|my 1, 20) - q(2q]70)

~
|
[\v]

q(xyq|xy, 20)q(24|70)
q(x_|z0)
T

= q(zp|zo) - HQ(xt—l‘xtva)

t=2

I
i

“q(zy]z0)
t

||
N}
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