
DIFFUSION MODELS NOTE

A PREPRINT

Kuan-Yu Cho
Mathematics

National Central University
Taoyuan City 320317

kycho@math.ncu.edu.tw

July 22, 2024

ABSTRACT

The purpose of this survey is to introduce the diffusion model. We will first introduce the basic
concepts of DDPM, and then introduce some developments based on DDPM, including DDIM and
the condition diffusion model. We will be writing using symbols customary to the mathematics
department.

Keywords

Diffusion Models

1 Introduction
Diffusion Probabilistic Models (DPM, or Diffusion Models) were first proposed by Sohl-Dickstein et al. (2015).
We will focus on the DDPM (Denoising Diffusion Probabilistic Models) (Ho, Jain, and Abbeel (2020)). We will also
introduce some developments based on DDPM: including DDIM (Denoising Diffusion Implicit Models) (Section 2.4)
and the condition diffusion model (Section 2.5).

The history of generative AI is rich and multifaceted, dating back several decades. Initially, generative models were
relatively simplistic, but advancements over time have led to the development of more sophisticated techniques. One
of the earliest breakthroughs in this field was the introduction of the Variational Autoencoder (VAE) (Kingma and
Welling (2022)). VAEs employ a probabilistic approach to model the distribution of data, allowing for the generation
of new, similar data points by sampling from this distribution. Following VAEs, Generative Adversarial Networks
(GANs) (Goodfellow et al. (2014)) revolutionized generative AI by using a game-theoretic approach, where two
neural networks—the generator and the discriminator—compete in a zero-sum game, resulting in the creation of
highly realistic data.

Diffusion models are a newer addition to this landscape and have shown remarkable promise. These models work
by simulating the diffusion process, wherein data points are progressively transformed from a simple distribution
(like Gaussian noise) to a complex data distribution. Notable types of diffusion models include Denoising Diffusion
Probabilistic Models (DDPMs) and Noise-Conditional Score Networks (NCSNs). DDPMs iteratively refine noisy data
points until they resemble the target distribution, whereas NCSNs use score matching to model the gradient of the data
distribution, which guides the generation process.

Recent developments in diffusion models have focused on enhancing their efficiency and quality. Innovations such
as improved noise scheduling, hybrid architectures combining features from VAEs and GANs, and advancements in
training techniques have all contributed to the rapid evolution of diffusion models. These advancements have enabled
diffusion models to generate data with unprecedented fidelity and have opened new avenues for their application across
various domains, including image synthesis, natural language processing, and beyond.

In summary, diffusion models have emerged as a powerful tool within the generative AI toolkit. Their ongoing devel-
opment promises to further push the boundaries of what is possible in data generation, offering exciting possibilities
for both research and practical applications.

mailto:kycho@math.ncu.edu.tw

A PREPRINT - JULY 22, 2024

Next, we introduce the basic concepts of DDPM.

2 Background
The diffusion model consists of two main parts:

1. Adding Noise (Forward Process): We gradually introduce independent noise to the starting image until it
becomes pure noise.

2. Denoising (Backward Process): Beginning with pure noise, we use the current image to estimate what the
previous image looked like. Repeating this process step by step, the final output image is our generated
picture.

TODO:補圖

We use mathematical formulas to describe the above statement. Given 𝑇 ∈ ℕ. Fix constants 𝛼𝑡, 𝛽𝑡 ∈ (0.001, 0.999)
for 𝑡 = 1, 2, ⋯ , 𝑇 such that 𝛼𝑡 + 𝛽𝑡 = 1. We set the following random vectors of ℝ𝑛 (note that here we only have
random vectors and not probability measures):

• 𝑋0: The initial image.
• ℰ𝑡, 𝑡 = 1, 2, ⋯ , 𝑇 : The noise added in step 𝑡.
• 𝑋𝑡 = √𝛼𝑡𝑋𝑡−1 + √𝛽𝑡ℰ𝑡, 𝑡 = 1, 2, ⋯ , 𝑇 : The image in step 𝑡.

To have the concepts of independence and noise, we need to have probability measures. In the following text, we use
lowercase 𝑞(𝑥) to denote the density of a probability measure Q corresponding to the random variable 𝑋. Others (e.g.,
𝑞(𝑥𝑡), 𝑝𝜃(𝑥𝑡)) are the same (𝑝𝜃 corresponds to P𝜃). We also use 𝑞(𝑥0∶𝑡) to denote the density of (𝑋0, 𝑋1, ⋯ , 𝑋𝑡) ∶=
𝑋0∶𝑡 for the probability measure Q. Others are the same.

Suppose 𝑞want(𝑥0) is the density of 𝑋0 we want to pursue. We do not know what 𝑞want(𝑥0) is. We only have some
eligible images (discrete data) with mass function 𝑞(𝑥0). When this discrete data large, 𝑞(𝑥0) ≈ 𝑞want(𝑥0) in some
sense of distribution. Our goal is to find a density 𝑝(𝑥0) of 𝑋0 such that 𝑝(𝑥0) ≈ 𝑞want(𝑥0) in some sense of
distribution.

2.1 Forward process
TODO: Notation

In the forward process, we add noise independently to the image. Note that adding noise independently is equivalent
to the Markov property (see Section A.1). We define the forward process ({𝑋0, ⋯ , 𝑋𝑇 }, Q) as a Markov chain with

• the initial density 𝑞(𝑥0), and
• the transition density

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(√𝛼𝑡𝑥𝑡−1, 𝛽𝑡I).

By the Markov property, the joint density of (𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋1, 𝑋0) for the forward process (or we say under Q) is

𝑞(𝑥𝑇 ∶0) = 𝑞(𝑥𝑇 |𝑥𝑇 −1) ⋅ 𝑞(𝑥𝑇 −1|𝑥𝑇 −2) ⋯ 𝑞(𝑥1|𝑥0) ⋅ 𝑞(𝑥0).

Recall that 𝑋𝑡 = √𝛼𝑡𝑋𝑡−1 + √𝛽𝑡ℰ𝑡. Then under Q, ℰ𝑡 ∼ 𝒩(0, I) and

𝑋0, ℰ1, ℰ2, ⋯ , ℰ𝑡 are independent

(see TODO: appendix). Define a random vector ℰ𝑡 by

𝑋𝑡 = √𝛼𝑡𝑋0 + √1 − 𝛼𝑡 ⋅ ℰ𝑡, (1)

where 𝛼𝑡 = 𝛼𝑡 ⋅𝛼𝑡−1 ⋯ 𝛼1. Then under Q, ℰ𝑡 ⟂ 𝑋0 and ℰ𝑡 ∼ 𝒩(0, I). This implies that 𝑋𝑇 converges in distribution
to 𝒩(0, I) under Q for 𝑇 large. Equation 1 is a important relation between 𝑋𝑡 and 𝑋0 and the noise ℰ𝑡. For example,

if we have an estimator of ℰ𝑡, say ℰ̂𝑡, then by this relationship, we have an estimator 𝑋0 = 𝑋0(𝑋𝑡, ℰ̂𝑡) of 𝑋0 satisfies
the following:

𝑋𝑡 = √𝛼𝑡𝑋0 + √1 − 𝛼𝑡 ⋅ ℰ̂𝑡. (2)

We will use this relationship when we reparameterize our model.

2

A PREPRINT - JULY 22, 2024

2.2 Backward process
In the backward process, we remove the noise according to the current image. This can also be described by the
Markov chain. Ideally we define the backward process ({𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋1, 𝑋0}, P) as a Markov chain with the
initial distribution 𝑝(𝑥𝑇) = 𝒩(0, I) and the transition density 𝑝(𝑥𝑡−1|𝑥𝑡) = 𝑞(𝑥𝑡−1|𝑥𝑡). In this assumption, we have
𝑝(𝑥0) ≈ 𝑞(𝑥0) in some sense of distribution (see TODO: appendix). We may sample 𝑥0 ∼ 𝑝(𝑥0) by the following:

• Sample 𝑥𝑇 ∼ 𝒩(0, I).
• Sample 𝑥𝑡−1 ∼ 𝑞(𝑥𝑡−1|𝑥𝑡) inductively for 𝑡 = 𝑇 , 𝑇 − 1, ⋯ , 1.

However, there is a problem with the sampling above. Although from the properties of conditional density, we have

𝑞(𝑥𝑡−1|𝑥𝑡) = 𝑞(𝑥𝑡−1)
𝑞(𝑥𝑡)

⋅ 𝑞(𝑥𝑡|𝑥𝑡−1).

It’s not easy to use this formula to sample 𝑥𝑡−1 ∼ 𝑞(𝑥𝑡−1|𝑥𝑡) through code since the expression of 𝑞(𝑥𝑡−1)/𝑞(𝑥𝑡)
may be complicated. The way to solve this problem is that we assume there is another probability measure P𝜃 which
is our model and can be sampled through code. There are several methods (SDE or just Taylor’s theory, see TODO:
appendix) to show that we can approximate 𝑞(𝑥𝑡−1|𝑥𝑡) with a normal. Hence, we construct P𝜃 such that

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡), Σ𝜃(𝑥𝑡, 𝑡)),

where 𝜇𝜃, Σ𝜃 is what we need to give. A way to construct P𝜃 is that we consider ({𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋1, 𝑋0}, P𝜃) is a
Markov chain with

• the initial density 𝑝𝜃(𝑥𝑇) = 𝒩(0, I) and
• the transition density

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡), Σ𝜃(𝑥𝑡, 𝑡)).

The joint density of 𝑋0∶𝑇 (under P𝜃) is, by the Markov property,

𝑝𝜃(𝑥0∶𝑇) = 𝑝𝜃(𝑥0|𝑥1) ⋅ 𝑝𝜃(𝑥1|𝑥2) ⋯ 𝑝𝜃(𝑥𝑇 −1|𝑥𝑇) ⋅ 𝑝(𝑥𝑇).

We can sample 𝑥0 ∼ 𝑝𝜃(𝑥0) by the following:

• Sample 𝑥𝑇 ∼ 𝒩(0, I).
• Sample 𝑥𝑡−1 ∼ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) inductively for 𝑡 = 𝑇 , 𝑇 − 1, ⋯ , 1.

Now our goal becomes to optimize 𝜃 such that 𝑝𝜃(𝑥0) ≈ 𝑞(𝑥0) in some sense. A common way to measure the
difference between 𝑝𝜃(𝑥0) and 𝑞(𝑥0) is the KL-divergence

𝐷KL(𝑞(𝑥0)‖𝑝𝜃(𝑥0)) = − ∫
𝑥0∈ℝ𝑛

𝑞(𝑥0) log 𝑝𝜃(𝑥0)
𝑞(𝑥0) d𝑥0.

By the definition of the KL-divergence,

𝜇∗
𝜃, Σ∗

𝜃 = arg min
𝜇𝜃,Σ𝜃

𝐷KL(𝑞(𝑥0)∥𝑝𝜃(𝑥0))

= arg min
𝜇𝜃,Σ𝜃

(− ∫ 𝑞(𝑥0) log(𝑝𝜃(𝑥0)
𝑞(𝑥0))d𝑥0)

= arg min
𝜇𝜃,Σ𝜃

(− ∫ 𝑞(𝑥0) log 𝑝𝜃(𝑥0)d𝑥0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝔼𝑋0∼𝑞(𝑥0)[− log 𝑝𝜃(𝑋0)]

).

Through the evidence lower bound(ELBO),

𝔼𝑋0∼𝑞(𝑥0)[− log 𝑝𝜃(𝑋0)] ≤ 𝔼𝑋0∶𝑇 ∼𝑞(𝑥0∶𝑇)[− log 𝑝𝜃(𝑋0∶𝑇)
𝑞(𝑋1∶𝑇 |𝑋0)] ∶= 𝐿.

3

https://en.wikipedia.org/wiki/Kullback–Leibler_divergence
https://en.wikipedia.org/wiki/Evidence_lower_bound

A PREPRINT - JULY 22, 2024

Our goal becomes to minimize 𝐿. We separate 𝐿 into three parts (for details, see TODO: appendix):

𝐿 = 𝔼𝑋0∼𝑞(𝑥0)[𝐷KL(𝑞(𝑥𝑇 |𝑥0)∥𝑝(𝑥𝑇))∣
𝑥0=𝑋0

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿𝑇

+
𝑇

∑
𝑡=2

𝔼𝑋0,𝑋𝑡∼𝑞(𝑥0,𝑥𝑡)[𝐷KL(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)∥𝑝𝜃(𝑥𝑡−1|𝑥𝑡))∣
𝑥0,𝑥𝑡=𝑋0,𝑋𝑡

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿𝑡−1

+ 𝔼𝑋0,𝑋1∼𝑞(𝑥0,𝑥1)[− log 𝑝𝜃(𝑥0|𝑥1)∣
𝑥0,𝑥1=𝑋0,𝑋1

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿0

.

(3)

• The first term 𝐿𝑇 controls how similar is the last image of the forward process to the pure noise. 𝐿𝑇 can be
calculated directly since both 𝑞(𝑥𝑇 |𝑥0), 𝑝(𝑥𝑇) are normal. The value is

𝐿𝑇 = 1
2(log(1 − 𝛼𝑇) + 𝑛(1

1 − 𝛼𝑇
− 1) + 𝛼𝑇

1 − 𝛼𝑇
𝔼𝑋0∼𝑞(𝑥0)[‖𝑋0‖2]).

It is clear that lim𝑇 →∞ 𝐿𝑡 = 0. From the above formula, depending only on the 𝐿2-norm of 𝑋0, 𝐿𝑇 can be
smaller if we shift 𝑋0 by its mean. For the question of how to choose the size of 𝑇 , see Franzese et al. (2023).

• The second term 𝐿𝑡−1, 𝑡 = 2, ⋯ , 𝑇 , is the most important since it determines how to choose 𝜇𝜃, Σ𝜃. This
term controls the similarity of 𝑋𝑡−1 in the forward and backward process. By Bayes’ rule and after a long
calculation (see TODO: appendix),

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩(𝑥𝑡−1; 𝜇𝑡(𝑥𝑡, 𝑥0), Σ𝑡), 𝑡 = 2, ⋯ , 𝑇 ,
where

𝜇𝑡(𝑥𝑡, 𝑥0) =
√𝛼𝑡(1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝑥𝑡 +

√𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

𝑥0, Σ𝑡 = 1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡I. (4)

2.2.1 To determine Σ𝜃 for 𝑡 ≥ 2
Since both 𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0), 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) are normal, it is natural to choose

Σ𝜃(𝑥, 𝑡) = Σ𝑡 = 1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡I ∶= 𝜎2
𝑡 I. (5)

2.2.2 To determine 𝜇𝜃 for 𝑡 ≥ 2
By the choice of Σ𝜃, we have

𝐿𝑡−1 = 𝔼𝑋0,𝑋𝑡∼𝑞(𝑥0,𝑥𝑡)[
1

2𝜎2
𝑡

∥𝜇𝑡(𝑋𝑡, 𝑋0) − 𝜇𝜃(𝑋𝑡, 𝑡)∥2]

= 𝔼 𝑋0∼𝑞(𝑥0),ℰ𝑡∼𝒩(0,I)
𝑋0,ℰ𝑡 are independent

𝑋𝑡=√𝛼𝑡𝑋0+√1−𝛼𝑡⋅ℰ𝑡

[1
2𝜎2

𝑡
∥𝜇𝑡(𝑋𝑡, 𝑋0) − 𝜇𝜃(𝑋𝑡, 𝑡)∥2].

Then we reparametrize 𝜇𝜃 by
𝜇𝜃(𝑋𝑡, 𝑡) = 𝜇𝑡(𝑋𝑡, 𝑋0), (6)

where 𝑋0 = 𝑋0(𝑋𝑡) is the estimate of 𝑋0 via our model by giving 𝑋𝑡 (we will give the details of 𝑋0 later
in Equation 8). With this parametrization and by the expression of 𝜇𝑡 in Equation 4, we have

∥𝜇𝑡(𝑋𝑡, 𝑋0) − 𝜇𝜃(𝑋𝑡, 𝑡)∥ =
√𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

∥𝑋0 − 𝑋0(𝑋𝑡)∥. (7)

Let Net𝜃 ∶ ℝ𝑛 × {1, 2, ⋯ , 𝑇 } ⟶ ℝ𝑛 be our neural network (with parameters 𝜃) we need to train. We can
choose Net𝜃 to predict 𝑋0, or ℰ𝑡 or the velocity 𝑉𝑡 (see Hang et al. (2023)). DDPM chooses to predict the

noise ℰ𝑡. That is, we use Net𝜃(𝑋𝑡, 𝑡) to be the character of ℰ̂𝑡 in Equation 2 and then we have the following
relation

𝑋𝑡 = √𝛼𝑡 ⋅ 𝑋0(𝑋𝑡) + √1 − 𝛼𝑡 ⋅ Net𝜃(𝑋𝑡, 𝑡). (8)

4

A PREPRINT - JULY 22, 2024

Note that 𝑋0 = 𝑋0(𝑋𝑡) = 𝑋0(𝑋𝑡, 𝜃). Hence, we have

𝐿𝑡−1 = 𝔼 𝑋0∼𝑞(𝑥0),ℰ𝑡∼𝒩(0,I)
𝑋0,ℰ𝑡 are independent

𝑋𝑡=√𝛼𝑡𝑋0+√1−𝛼𝑡⋅ℰ𝑡

(𝛽2
𝑡

2𝜎2
𝑡 𝛼𝑡(1 − 𝛼𝑡)

∥ℰ𝑡 − Net𝜃(𝑋𝑡, 𝑡)∥
2
).

• For the third term 𝐿0. Recall that we assume 𝑝𝜃(𝑥0|𝑥1) = 𝒩(𝑥0; 𝜇𝜃(𝑥1, 1), Σ𝜃(𝑥1, 1)). For convience (see
Equation 5), we choose Σ𝜃(𝑥1, 1) to be a constant matrix indepdent of 𝜃 and 𝑥1, e.g.,

Σ𝜃(𝑥1, 1) = 𝛽1I ∶= 𝜎2
1I.

Note that

− log 𝑝𝜃(𝑥0|𝑥1) = 1
2𝛽1

∥𝑥0 − 𝜇𝜃(𝑥1, 1)∥2 + const,

where const is some constant independent of (𝑥0, 𝑥1, 𝜃). Here we also reparametrize 𝜇𝜃 by Equation 6 for
𝑡 = 1 with 𝛼0 ∶= 1. In this setting,

𝜇𝜃(𝑋1, 1) = 𝜇1(𝑋1, 𝑋0(𝑋1)) = 𝑋0(𝑋1).
To maximize

𝐿0 = 𝔼𝑋0,𝑋1∼𝑞(𝑥0,𝑥1)[− log 𝑝𝜃(𝑥0|𝑥1)∣
𝑥0,𝑥1=𝑋0,𝑋1

]

is equivalent to maximize

𝐿′
0 = 𝔼𝑋0,𝑋1∼𝑞(𝑥0,𝑥1)[

1
2𝛽1

∥𝑋0 − 𝑋0(𝑋1)∥2].

Hence, if we use the same assumption from Equation 8, our goal is to minimize

𝐿′
0 = 𝔼𝑋0,𝑋1∼𝑞(𝑥0,𝑥1)[

1 − 𝛼1
2𝛽1𝛼1

∥𝑋0 − 𝑋0(𝑋1)∥2]

= 𝔼 𝑋0∼𝑞(𝑥0),ℰ𝑡∼𝒩(0,I)
𝑋0,ℰ𝑡 are independent

𝑋𝑡=√𝛼𝑡𝑋0+√1−𝛼𝑡⋅ℰ𝑡

(𝛽2
𝑡

2𝜎2
𝑡 𝛼𝑡(1 − 𝛼𝑡)

∥ℰ𝑡 − Net𝜃(𝑋𝑡, 𝑡)∥
2
)

with 𝑡 = 1.

2.3 Training and Sampling
Note that we minimize 𝔼𝑋∼𝑞(𝑥)[𝑓𝜃(𝑋)] by repeating the following:

• Sampling 𝑥 ∼ 𝑞(𝑥) and then
• minimizing 𝑓𝜃(𝑥) by taking gradient descent on 𝜃.

Recall that for 𝑡 = 2, 3, ⋯ , 𝑇 ,

𝐿𝑡−1 = 𝔼 𝑋0∼𝑞(𝑥0),ℰ𝑡∼𝒩(0,I)
𝑋0,ℰ𝑡 are independent

𝑋𝑡=√𝛼𝑡𝑋0+√1−𝛼𝑡⋅ℰ𝑡

(𝛽2
𝑡

2𝜎2
𝑡 𝛼𝑡(1 − 𝛼𝑡)

∥ℰ𝑡 − Net𝜃(𝑋𝑡, 𝑡)∥
2
).

DDPM chooses a simple version that minimizes 𝐿simple
𝑡−1 , ignoring the weights in the expectation:

𝐿simple
𝑡−1 = 𝔼 𝑋0∼𝑞(𝑥0),ℰ𝑡∼𝒩(0,I)

𝑋0,ℰ𝑡 are independent
𝑋𝑡=√𝛼𝑡𝑋0+√1−𝛼𝑡⋅ℰ𝑡

(∥ℰ𝑡 − Net𝜃(𝑋𝑡, 𝑡)∥
2
).

𝐿0 is the same. Therefore, our training algorithm is as follows:

5

A PREPRINT - JULY 22, 2024

Algorithm 1 Training (DDPM)
1: repeat
2: 𝑡 ∼ Uniform({1, ⋯ , 𝑇 }) ▷ Sample random step
3: 𝑥0 ∼ 𝑞(𝑥0) ▷ Sample random initial image
4: 𝜀𝑡 ∼ 𝒩(0, I) ▷ Sample random noise
5: 𝑥𝑡 = √𝛼𝑡𝑥0 + √1 − 𝛼𝑡 ⋅ 𝜀𝑡

6: Take gradient descent step on ∥𝜀𝑡 − Net𝜃(𝑥𝑡, 𝑡)∥
2

▷ Optimization
7: until converged

For the sampling, we may sample 𝑥0 ∼ 𝑝𝜃(𝑥0) by the following:

• Sample 𝑥𝑇 ∼ 𝒩(0, I).
• Sample 𝑥𝑡−1 ∼ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) inductively for 𝑡 = 𝑇 , 𝑇 − 1, ⋯ , 1.

Recall that 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ∼ 𝒩(𝜇𝜃(𝑥𝑡, 𝑡), 𝜎𝑡I), where

𝜇𝜃(𝑥𝑡, 𝑡) = 1√𝛼𝑡
(𝑥𝑡 − 𝛽𝑡

√1 − 𝛼𝑡
Net𝜃(𝑥𝑡, 𝑡)).

Therefore, our sampling algorithm is as follows:

Algorithm 2 Sampling (DDPM)

1: 𝑥𝑇 ∼ 𝒩(0, I)
2: for 𝑡 = 𝑇 , ⋯ , 1 do
3: if 𝑡 > 1 then
4: 𝑧 ∼ 𝒩(0, I)
5: else
6: 𝑧 = 0
7: end if
8: 𝑥𝑡−1 = 1√𝛼𝑡

(𝑥𝑡 − 1−𝛼𝑡
√1−𝛼𝑡

Net𝜃(𝑥𝑡, 𝑡)) + 𝜎𝑡𝑧
9: end for

10: return 𝑥0

2.4 DDIM
One of the major drawbacks of DDPM is the lengthy time required for data generation, especially when compared to
other generative AI methods. In response to this issue, an improved version of DDPM, known as Denoising Diffusion
Implicit Models (DDIM), was introduced by Song, Meng, and Ermon (2022). The primary innovation of DDIM is its
ability to significantly accelerate the data generation process. By refining the underlying diffusion mechanism, DDIM
reduces the number of required diffusion steps without sacrificing the quality of the generated data. This breakthrough
makes DDIM a more practical and efficient alternative for generative AI tasks, offering faster performance while
maintaining high-quality outputs.

Now we introduce the DDIM. The main reason why we can decompose 𝐿 in Equation 3 in DDPM is that we have the
following production of two densities:

𝑝𝜃(𝑥0∶𝑇) = 𝑝𝜃(𝑥𝑇) ⋅
𝑇

∏
𝑡=2

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ⋅ 𝑝𝜃(𝑥0|𝑥1),

𝑞(𝑥1∶𝑇 |𝑥0) = 𝑞(𝑥𝑇 |𝑥0) ⋅
𝑇

∏
𝑡=2

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0).
(9)

DDIM consider a new forward process ({𝑋0, 𝑋1, ⋯ , 𝑋𝑇 }, Q𝜎), where Q𝜎 is some probability measure indexed by
𝜎 ∈ [0, ∞)𝑇 . The forward process is not a Markov chain but has the same conditional density of 𝑋𝑡 given 𝑋0 = 𝑥0
for each 𝑡 as DDPM. Inspired by Equation 9, DDIM directly defines the joint density

𝑞𝜎(𝑥0∶𝑇) ∶= 𝑞𝜎(𝑥𝑇 |𝑥0) ⋅
𝑇

∏
𝑡=2

𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0) ⋅ 𝑞(𝑥0),

6

A PREPRINT - JULY 22, 2024

where 𝑞𝜎(𝑥𝑇 |𝑥0) ∶= 𝒩(√𝛼𝑇 𝑥0, (1 − 𝛼𝑇)I) and

𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0) ∶= 𝒩(√𝛼𝑡−1𝑥0 + √1 − 𝛼𝑡−1 − 𝜎2
𝑡 ⋅ 𝑥𝑡 − √𝛼𝑡𝑥0

√1 − 𝛼𝑡
, 𝜎2

𝑡 I), 𝑡 = 2, ⋯ , 𝑇 .

Note that 𝑞𝜎(𝑥0∶𝑇) is a density since it is a product of densities. This seems a little weird that the joint density
of 𝑞𝜎(𝑥0∶𝑇) is determined by some conditional density. In fact, ({𝑋0, 𝑋1, ⋯ , 𝑋𝑇 }, Q𝜎) is a process satisfying the
following conditions:

1. Under Q𝜎, 𝑋0 has the density 𝑞(𝑥0).
2. Conditioned on 𝑋0 = 𝑥0, the process ({𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋2, 𝑋1}∣

𝑋0=𝑥0
, Q𝜎) is a Markov chain with

• the initial density 𝑞𝜎(𝑥𝑇 |𝑥0) = 𝒩(√𝛼𝑇 𝑥0, (1 − 𝛼𝑇)I) and
• the transition density

𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩(√𝛼𝑡−1𝑥0 + √1 − 𝛼𝑡−1 − 𝜎2
𝑡 ⋅ 𝑥𝑡 − √𝛼𝑡𝑥0

√1 − 𝛼𝑡
, 𝜎2

𝑡 I), 𝑡 = 2, ⋯ , 𝑇 .

Note that if we write 𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩(𝑓(𝑥𝑡, 𝑥0, 𝑡), 𝜎2
𝑡 I), then the process

({𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋2, 𝑋1}∣
𝑋0=𝑥0

, Q𝜎)

can be write as, conditioned on 𝑋0 = 𝑥0,
𝑋𝑡−1 = 𝑓(𝑋𝑡, 𝑥0, 𝑡) + 𝜎𝑡𝜉𝑡, 𝑡 = 𝑇 , ⋯ , 2,

where 𝑋𝑇 , 𝜉𝑇 −1, 𝜉𝑇 −2, ⋯ , 𝜉1 are independent under Q𝜎.

For each 𝜎 ∈ [0, ∞)𝑇 , we can show that for this joint density 𝑞𝜎(𝑥0∶𝑇),
𝑞𝜎(𝑥0) = 𝑞(𝑥0),

𝑞𝜎(𝑥𝑡|𝑥0) = 𝒩(√𝛼𝑡𝑥0, (1 − 𝛼𝑡)I) = 𝑞(𝑥𝑡|𝑥0), 𝑡 = 1, ⋯ , 𝑇 .
DDIM consider the backward process ({𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋1, 𝑋0}, P𝜃) as a Markov chain with the initial distribution
𝑝𝜃(𝑥𝑇) = 𝒩(0, I) and the transition density

𝑝𝜃(𝑥0|𝑥1) = 𝒩(̂𝑥0(𝑥1, 1), 𝜎2
1I),

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝑞𝜎(𝑥𝑡−1|𝑥𝑡, ̂𝑥0)

= 𝒩(√𝛼𝑡−1 ̂𝑥0 + √1 − 𝛼𝑡−1 − 𝜎2
𝑡 ⋅ 𝑥𝑡 − √𝛼𝑡 ̂𝑥0

√1 − 𝛼𝑡
, 𝜎2

𝑡 I), 𝑡 = 2, ⋯ , 𝑇 ,

where ̂𝑥0 = ̂𝑥0(𝑥𝑡, 𝑡) satisfies

𝑥𝑡 = √𝛼𝑡 ⋅ ̂𝑥0(𝑥𝑡, 𝑡) + √1 − 𝛼𝑡 ⋅ Net𝜃(𝑥𝑡, 𝑡), 𝑥 ∈ ℝ𝑛, 𝑡 ∈ ℕ.
By the constructions of 𝑞𝜎, 𝑝𝜃, we still have the decomposition

𝔼𝑋0∶𝑇 ∼𝑞𝜎(𝑥0∶𝑇)[− log 𝑝𝜃(𝑋0∶𝑇)
𝑞𝜎(𝑋1∶𝑇 |𝑋0)]

= 𝔼𝑋0∼𝑞𝜎(𝑥0)[𝐷KL(𝑞𝜎(𝑥𝑇 |𝑥0)∥𝑝(𝑥𝑇))∣
𝑥0=𝑋0

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿𝑇

+
𝑇

∑
𝑡=2

𝔼𝑋0,𝑋𝑡∼𝑞𝜎(𝑥0,𝑥𝑡)[𝐷KL(𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0)∥𝑝𝜃(𝑥𝑡−1|𝑥𝑡))∣
𝑥0,𝑥𝑡=𝑋0,𝑋𝑡

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿𝑡−1

+ 𝔼𝑋0,𝑋1∼𝑞𝜎(𝑥0,𝑥1)[− log 𝑝𝜃(𝑥0|𝑥1)∣
𝑥0,𝑥1=𝑋0,𝑋1

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿0

.

There are two special values for 𝜎.

7

A PREPRINT - JULY 22, 2024

• The first one is
𝜎𝑡 = √(1 − 𝛼𝑡−1)/(1 − 𝛼𝑡)√1 − 𝛼𝑡, 𝑡 = 1, ⋯ , 𝑇 .

Under this 𝜎, the process ({𝑋0, 𝑋1, ⋯ , 𝑋𝑇 }, Q𝜎) becomes a Markov chain and the DDIM becomes the
original DDPM.

• The second one is 𝜎𝑡 = 0 for 𝑡 = 1, 2, ⋯ , 𝑇 . In this case, the backward process ({𝑋𝑇 , 𝑋𝑇 −1, ⋯ , 𝑋0}, P𝜃)
becomes deterministic when we condition on 𝑋𝑇 = 𝑥𝑇 . This greatly speeds up the sampling of diffusion
models. In this case,

𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩(√𝛼𝑡−1𝑥0 + √1 − 𝛼𝑡−1 ⋅ 𝑥𝑡 − √𝛼𝑡𝑥0
√1 − 𝛼𝑡

, 0)

= 𝒩((√𝛼𝑡−1 −
√𝛼𝑡

√1 − 𝛼𝑡
)𝑥0 + √1 − 𝛼𝑡−1

√1 − 𝛼𝑡
𝑥𝑡 , 0)

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩(1√𝛼𝑡
𝑥𝑡 + (√1 − 𝛼𝑡−1 − √1 − 𝛼𝑡√𝛼𝑡

) ⋅ Net𝜃(𝑥𝑡, 𝑡) , 0).

2.5 Conditional Diffusion Model
Dhariwal and Nichol (2021)

• 一般沒有限定條件的 diffusion model，我們無法去控制想生成的東西。這明顯無法滿足我們的需求。
比如說在 mnist之中，我們想要去控制生成 0~9的是哪個數字。又比如說 celebA這資料集中，我
們想要去生成的大頭像有什麼特徵（比如說是男是女，有無戴眼鏡）。所以自然而然會有所謂的
Conditional diffusion model。

• 我們先從簡單類別的說起，用 mnist的數字來解釋。我們現在有資料集 𝑋 × 𝑌 的分佈
̂𝑞(𝑥0, 𝑦), 𝑥0 ∈ ℝ𝑤×ℎ, 𝑦 ∈ ℝ𝑛,

where

– 𝑋0是數字圖片;
– 𝑌 是數字 label在 ℝ𝑛的 embed

* That is, ℝ𝑛 is the embed space of labels.
* For this example, 0, 1, ⋯ , 9 are nn.Embedding(10,n)(torch.arange(10)).（所以這裡 embed
也是要可學習的）.

• Given the label 𝑌 = 𝑦. We want to generate an image 𝑥0 which has the label 𝑦.
• Assume that we already have ̂𝑞(𝑦|𝑥0). That is, when we have 𝑥0, we know the distribution of labels of 𝑥0.
• 如果忽略掉 𝑌 ,只看 𝑋0,可視為之前的 unconditional diffusion model

• We define 𝑞 as before:

– 𝑞(𝑥0): the distribution of 𝑋0 (無表達式);
– 𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(√𝛼𝑡𝑥𝑡−1, (1 − 𝛼𝑡)I).

2.5.0.1 Important

• 同樣地我們令 {𝑋𝑡}𝑇
𝑡=0為時間 𝑡時的加噪圖片,只是加噪方式是如下:

Define the forward process of (𝑋0∶𝑇 , 𝑌) by the following:

– ̂𝑞(𝑥0) ∶= 𝑞(𝑥0) (無表達式) (eq 28).
* So that we have ̂𝑞(𝑥0, 𝑦) = 𝑞(𝑥0)⏟

無表達式

⋅ ̂𝑞(𝑦|𝑥0)⏟
有表達式

.

– ̂𝑞(𝑥𝑡|𝑥𝑡−1, 𝑦) ∶= 𝑞(𝑥𝑡|𝑥𝑡−1) (有表達式) (eq 30);
– ̂𝑞(𝑥1∶𝑇 |𝑥0, 𝑦) ∶= ∏𝑇

𝑡=1 ̂𝑞(𝑥𝑡|𝑥𝑡−1, 𝑦) (eq 31).

8

A PREPRINT - JULY 22, 2024

* Conditioned on 𝑌 = 𝑦, the forward process 𝑋0, 𝑋1, ⋯ , 𝑋𝑇 is a Markov chain with the transition
density 𝑞(𝑥𝑡|𝑥𝑡−1).

Note that
̂𝑞(𝑥0∶𝑇 , 𝑦) = ̂𝑞(𝑥0, 𝑦) ⋅ ̂𝑞(𝑥1∶𝑇 |𝑥0, 𝑦),

= ̂𝑞(𝑥0, 𝑦) ⋅
𝑇

∏
𝑡=1

̂𝑞(𝑥𝑡|𝑥𝑡−1, 𝑦).

• For this ̂𝑞, we have

– ̂𝑞(𝑥𝑡|𝑥𝑡−1) = ̂𝑞(𝑥𝑡|𝑥𝑡−1, 𝑦) (eq 32~37) = 𝑞(𝑥𝑡|𝑥𝑡−1) (eq 30);
– ̂𝑞(𝑥1∶𝑇 |𝑥0) = 𝑞(𝑥1∶𝑇 |𝑥0) (eq 38~44);
– ̂𝑞(𝑥𝑡) = 𝑞(𝑥𝑡) (eq 45~50);
– ̂𝑞(𝑥𝑡−1|𝑥𝑡) = 𝑞(𝑥𝑡−1|𝑥𝑡);
– (上面四點說明 ̂𝑞在不考慮 label時,跟之前的 diffusion model 𝑞分佈完全一樣);
– ̂𝑞(𝑦|𝑥𝑡−1, 𝑥𝑡) = ̂𝑞(𝑦|𝑥𝑡−1) (eq 51~54);

– ̂𝑞(𝑥𝑡−1|𝑥𝑡, 𝑦) = 𝑞(𝑥𝑡−1|𝑥𝑡)⏟⏟⏟⏟⏟
≈𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

⋅ ̂𝑞(𝑦|𝑥𝑡−1)⏟
≈𝑝𝜙(𝑦|𝑥𝑡−1)

/ ̂𝑞(𝑦|𝑥𝑡)⏟
constant

(eq 55~61).

* Note that 𝑝𝜙(𝑦|𝑥𝑡)是 𝑝𝜙(𝑦|𝑥𝑡, 𝑡)的縮寫.
* Note that 𝑝𝜃(𝑥𝑡−1|𝑥𝑡), 𝑝𝜙(𝑦|𝑥𝑡−1) is our model.

· 這裡可以使用已經訓練好的 𝑝𝜃 (純粹 DDPM的)和分類器.
– Define 𝑝𝜃,𝜙(𝑥𝑡−1|𝑥𝑡, 𝑦) = constant ⋅ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ⋅ 𝑝𝜙(𝑦|𝑥𝑡−1). So when given the label 𝑦, we sample 𝑥0

(with label 𝑦) by the following:
* For 𝑡 = 𝑇 , 𝑇 − 1, ⋯ , 1,

· Sample 𝑥𝑡 ∼ 𝑝𝜃,𝜙(𝑥𝑡−1|𝑥𝑡, 𝑦)
* EndFor

We organize the formula 𝑝𝜃,𝜙(𝑥𝑡−1|𝑥𝑡, 𝑦). Consider 𝑥𝑡, 𝑦 as two given constants. Using a Taylor expan-
sion at 𝑥𝑡−1 = 𝜇 (some constant), we have

log 𝑝𝜙(𝑦|𝑥𝑡−1) ≈ log 𝑝𝜙(𝑦|𝑥𝑡−1)∣
𝑥𝑡−1=𝜇

+ (𝑥𝑡−1 − 𝜇)∇𝑥𝑡−1
log 𝑝𝜙(𝑦|𝑥𝑡−1)∣

𝑥𝑡−1=𝜇
= (𝑥𝑡−1 − 𝜇)⋅

2.5.0.2 Sampling (DDPM with classifier)

• Given: 訓練好的 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) (DDPM)和分類器 𝑝𝜙(𝑦|𝑥𝑡−1).
• Input: A label 𝑦 and a gradient scale 𝑠 ∈ (1, ∞)
• Sample 𝑥𝑇 ∼ 𝒩(0, I).
• For 𝑡 = 𝑇 , 𝑇 − 1, ⋯ , 1

– 𝜇, Σ ← 𝜇𝜃(𝑥𝑡), Σ𝜃(𝑥𝑡)
– Sample 𝑥𝑡−1 ∼ 𝒩(𝜇, Σ)

* Comment Sample from unconditional diffusion model
– 𝑥𝑡−1 ← 𝑥𝑡−1 + 𝑠Σ∇𝑥𝑡

log 𝑝𝜙(𝑦|𝑥𝑡)
* Comment 有點像是對 𝑝𝜃,𝜙(𝑥𝑡−1|𝑥𝑡, 𝑦) 做 gradient ascent, 增加 𝑦 的 log-likelihood. 引導 𝑥𝑡−1
向 label 𝑦的方向前進.

• EndFor
• Return 𝑥0

2.6 Predict Velocity
We have two predictions in the following.

• The first is to predict the initial image 𝑋0 by giving 𝑋𝑡. We set

𝜇𝜃(𝑥𝑡, 𝑡) = 𝜇𝑡(𝑥𝑡, Net𝜃(𝑥𝑡, 𝑡))

=
√𝛼𝑡(1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝑥𝑡 +

√𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

⋅ Net𝜃(𝑥𝑡, 𝑡), 𝑥𝑡 ∈ ℝ𝑛, 𝑡 = 2, ⋯ , 𝑇 ,

9

A PREPRINT - JULY 22, 2024

and then

∥𝜇𝑡(𝑥𝑡, 𝑥0) − 𝜇𝜃(𝑥𝑡, 𝑡)∥ =
√𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

∥𝑥0 − Net𝜃(𝑥𝑡, 𝑡)∥.

• The second is to predict the noise 𝜀𝑡 by giving 𝑥𝑡, 𝑡. We set

𝜇𝜃(𝑥𝑡, 𝑡) = ̃𝜇𝑡(𝑥𝑡, Net𝜃(𝑥𝑡, 𝑡))

= 1√𝛼𝑡
(𝑥𝑡 − 𝛽𝑡

√1 − 𝛼𝑡
⋅ Net𝜃(𝑥𝑡, 𝑡)), 𝑥𝑡 ∈ ℝ𝑛, 𝑡 = 2, ⋯ , 𝑇 ,

and then
∥𝜇𝑡(𝑥𝑡, 𝑥0) − 𝜇𝜃(𝑥𝑡, 𝑡)∥ = 𝛽𝑡√𝛼𝑡 ⋅ √1 − 𝛼𝑡

∥𝜀𝑡 − Net𝜃(𝑥𝑡, 𝑡)∥.

In the backward process, we predict the noise ℰ𝑡 or the initial image 𝑋0. There is another prediction (prediction for
the velocity, see TODO: pred_v). For simplicity, we set

𝑎𝑡 ∶= √𝛼𝑡, 𝑏𝑡 ∶= √1 − 𝛼𝑡.
Then we may rewrite

𝑋𝑡 = 𝑎𝑡𝑋0 + 𝑏𝑡ℰ𝑡, 𝑎2
𝑡 + 𝑏2

𝑡 = 1.
Define the velocity, a random vector we want to predict,

𝑉𝑡 ∶= −𝑏𝑡𝑋0 + 𝑎𝑡ℰ𝑡.
Then we have the following relations:

𝑋0 = 𝑎𝑡𝑋𝑡 − 𝑏𝑡𝑉𝑡,
ℰ𝑡 = 𝑏𝑡𝑋𝑡 + 𝑎𝑡𝑉𝑡.

Then our algorithms become

1. Training

• 𝑥0 ∼ 𝑞(𝑥0)
• 𝜀𝑡 ∼ 𝒩(0, I)
• 𝑥𝑡 = 𝑎𝑡𝑥0 + 𝑏𝑡𝜀𝑡
• 𝑣𝑡 = −𝑏𝑡𝑥0 + 𝑎𝑡𝜀𝑡
• Loss is ∥Net𝜃(𝑥𝑡, 𝑡) − 𝑣𝑡∥

2

2. Sampling

• ̂𝑣 = Net𝜃(𝑥𝑡, 𝑡)
• ̂𝜀 = 𝑏𝑡𝑥𝑡 + 𝑎𝑡 ̂𝑣, ̂𝑥0 = 𝑎𝑡𝑥𝑡 − 𝑏𝑡 ̂𝑣
• ̂𝜇 = 1√𝛼𝑡

(𝑥𝑡 − 𝛽𝑡
𝑏𝑡

) ̂𝜀

3 Experiments

4 Conclusion

10

A PREPRINT - JULY 22, 2024

References
Anderson, Brian D. O. 1982. “Reverse-Time Diffusion Equation Models.” Stochastic Processes and Their Applica-

tions 12 (3): 313–26. https://doi.org/10.1016/0304-4149(82)90051-5.
Dhariwal, Prafulla, and Alex Nichol. 2021. “Diffusion Models Beat GANs on Image Synthesis.” https://arxiv.org/abs/

2105.05233.
Franzese, Giulio, Simone Rossi, Lixuan Yang, Alessandro Finamore, Dario Rossi, Maurizio Filippone, and Pietro

Michiardi. 2023. “How Much Is Enough? A Study on Diffusion Times in Score-Based Generative Models.”
Entropy 25 (4): 633.

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. 2014. “Generative Adversarial Networks.” https://arxiv.org/abs/1406.2661.

Hang, Tiankai, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining Guo. 2023. “Effi-
cient Diffusion Training via Min-SNR Weighting Strategy.” In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 7441–51.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. 2020. “Denoising Diffusion Probabilistic Models.” Advances in Neural
Information Processing Systems 33: 6840–51.

Kingma, Diederik P, and Max Welling. 2022. “Auto-Encoding Variational Bayes.” https://arxiv.org/abs/1312.6114.
Sohl-Dickstein, Jascha, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. “Deep Unsupervised Learn-

ing Using Nonequilibrium Thermodynamics.” In Proceedings of the 32nd International Conference on Machine
Learning, edited by Francis Bach and David Blei, 37:2256–65. Proceedings of Machine Learning Research. Lille,
France: PMLR. https://proceedings.mlr.press/v37/sohl-dickstein15.html.

Song, Jiaming, Chenlin Meng, and Stefano Ermon. 2022. “Denoising Diffusion Implicit Models.” https://arxiv.org/
abs/2010.02502.

11

https://doi.org/10.1016/0304-4149(82)90051-5
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502

A PREPRINT - JULY 22, 2024

A Appendix
A.1 Markov property is equivalent to adding noise independently
Given the probability measure Q such that

• 𝑞(𝑥0) is the mass (respect to Q) of our image data, and
• 𝑋0, ℰ1, ⋯ , ℰ𝑇 are independent under Q, and
• ℰ𝑡 ∼ 𝒩(0, I) under Q for 𝑡 = 1, ⋯ , 𝑇 .

Under the assumptions above, we have the following properties under Q:

• Under Q, if we set
𝑋𝑡 = √𝛼𝑡𝑋0 + √1 − 𝛼𝑡 ⋅ ℰ𝑡,

then 𝑋0, ℰ𝑡 are independent, and ℰ𝑡 ∼ 𝒩(0, I). Note that this property says that 𝑞(𝑥𝑇) ≈ 𝒩(0, I) as 𝑇
large.

• Under Q, {𝑋0, 𝑋1, ⋯ , 𝑋𝑇 } is a Markov chain with the transition density

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(√𝛼𝑡𝑥𝑡−1, 𝛽𝑡I).

Remark. Note that the Markov property is equivalent to adding noise independently. That is, if ({𝑋𝑡}𝑇
𝑡=0, Q) is a

Markov chain with the transition density

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(√𝛼𝑡𝑥𝑡−1, 𝛽𝑡I).
and we set

𝑋𝑡 = √𝛼𝑡𝑋0 + √1 − 𝛼𝑡 ⋅ ℰ𝑡,
then

• 𝑋0, ℰ1, ⋯ , ℰ𝑇 are independent under Q, and
• ℰ𝑡 ∼ 𝒩(0, I) under Q for 𝑡 = 1, ⋯ , 𝑇 .

A.2 𝑞(𝑥0) ≈ 𝑝(𝑥0)
Note that

𝑞(𝑥0∶3) = 𝑞(𝑥3|𝑥2) ⋅ 𝑞(𝑥2|𝑥1) ⋅ 𝑞(𝑥1|𝑥0) ⋅ 𝑞(𝑥0)

= 𝑞(𝑥3)
𝑞(𝑥2)𝑞(𝑥2|𝑥3) ⋅ 𝑞(𝑥2)

𝑞(𝑥1)𝑞(𝑥1|𝑥2) ⋅ 𝑞(𝑥1)
𝑞(𝑥0)𝑞(𝑥0|𝑥1) ⋅ 𝑞(𝑥0)

= 𝑞(𝑥0|𝑥1) ⋅ 𝑞(𝑥1|𝑥2) ⋅ 𝑞(𝑥2|𝑥3) ⋅ 𝑞(𝑥3)⏟
≈𝒩(0,I)

and
𝑝(𝑥0∶3) = 𝑞(𝑥0|𝑥1) ⋅ 𝑞(𝑥1|𝑥2) ⋅ 𝑞(𝑥2|𝑥3) ⋅ 𝑝(𝑥3)⏟

𝒩(0,I)
.

Then
𝑞(𝑥0) = ∫

𝑥1∶3

𝑞(𝑥0∶3) d𝑥0∶3 ≈ ∫
𝑥1∶3

𝑝(𝑥1∶3) d𝑥0∶3 = 𝑝(𝑥0).

A.3 SDE
Suppose that (𝑋𝑡)𝑡∈[0,1] satisfies the SDE

d𝑋𝑡 = 𝜇(𝑋𝑡, 𝑡)d𝑡 + 𝜎(𝑋𝑡, 𝑡)d𝐵𝑡,
where 𝜇(⋅, 𝑡) ∶ ℝ𝑛 ⟶ ℝ𝑛 and 𝜎(⋅, 𝑡) ∶ ℝ𝑛 ⟶ ℝ𝑛×𝑛 and (𝐵𝑡)𝑡∈[0,1] is a standard 𝑛-dimensional Brownian Motion.
Let 𝑞(⋅, 𝑡) be the density of 𝑋𝑡 for each 𝑡 ∈ [0, 1]. We have the following results:

• For 𝑡 ∈ [0, 1], we define

𝑋𝑡 ∶= 𝑋1−𝑡, 𝑞(⋅, 𝑡) ∶= 𝑞(⋅, 1 − 𝑡),
𝜇(⋅, 𝑡) ∶= 𝜇(⋅, 1 − 𝑡), 𝜎(⋅, 𝑡) ∶= 𝜎(⋅, 1 − 𝑡).

12

A PREPRINT - JULY 22, 2024

Then by Anderson (1982), the reverse process (𝑋𝑡)𝑡∈[0,1] satisfies the following SDE:

d𝑋𝑡 = (− 𝜇(𝑋𝑡, 𝑡) + 𝜎(𝑋𝑡, 𝑡)𝜎(𝑋𝑡, 𝑡)T∇𝑥 log 𝑞(𝑋𝑡, 𝑡) + ∇𝑥𝜎(𝑋𝑡, 𝑡)𝜎(𝑋𝑡, 𝑡)T
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

drift coefficient

)d𝑡

+ 𝜎(𝑋𝑡, 𝑡)⏟
diffusion coefficient

d𝐵𝑡,
(10)

where (𝐵𝑡)𝑡∈[0,1] is a standard 𝑛-dimensional Brownian Motion.

– Note that the diffusion coefficient of the reverse process (𝑋𝑡)𝑡∈[0,1] has the same form as (𝑋𝑡)𝑡∈[0,1].
This explains why it is reasonable to assume that Σ𝜃(𝑥, 𝑡) is independent of 𝑥 in Equation 5.

– If 𝜎(⋅, 𝑡) = 𝜎(𝑡) is independent of 𝑥, then ∇𝑥𝜎(𝑋𝑡, 𝑡)𝜎(𝑋𝑡, 𝑡)T = 0 and the drift coefficient of Equa-
tion 10 is the original average −𝜇(𝑋𝑡, 𝑡) guided by the score function ∇𝑥 log 𝑞(𝑋𝑡, 𝑡).

• Consider a process (𝑋𝑡)𝑡∈[0,1] satisfies the ODE

d𝑋𝑡 = (𝜇(𝑋𝑡, 𝑡) − 1
2𝜎(𝑋𝑡, 𝑡)𝜎(𝑋𝑡, 𝑡)T∇𝑥 log 𝑞(𝑋𝑡, 𝑡) − 1

2∇𝑥𝜎(𝑋𝑡, 𝑡)𝜎(𝑋𝑡, 𝑡)T)d𝑡.

Then for each 𝑡 ∈ [0, 1], 𝑋𝑡 and 𝑋𝑡 have the same distribution.

A.4 Seperate 𝐿

𝐿 ∶= 𝔼𝑋0∶𝑇 ∼𝑞(𝑥0∶𝑇)[− log 𝑝𝜃(𝑋0∶𝑇)
𝑞(𝑋1∶𝑇 |𝑋0)].

𝑝𝜃(𝑥0∶𝑇) = 𝑝𝜃(𝑥𝑇) ⋅
𝑇

∏
𝑡=2

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ⋅ 𝑝𝜃(𝑥0|𝑥1),

𝑞(𝑥1∶𝑇 |𝑥0) =
𝑇

∏
𝑡=2

𝑞(𝑥𝑡|𝑥𝑡−1) ⋅ 𝑞(𝑥1|𝑥0)

=
𝑇

∏
𝑡=2

𝑞(𝑥𝑡|𝑥𝑡−1, 𝑥0) ⋅ 𝑞(𝑥1|𝑥0)

=
𝑇

∏
𝑡=2

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)𝑞(𝑥𝑡|𝑥0)
𝑞(𝑥𝑡−1|𝑥0) ⋅ 𝑞(𝑥1|𝑥0)

= 𝑞(𝑥𝑇 |𝑥0) ⋅
𝑇

∏
𝑡=2

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)

13

	Introduction
	Background
	Forward process
	Backward process
	To determine \Sigma_{\theta} for t\geq 2
	To determine \mu_{\theta} for t\geq 2

	Training and Sampling
	DDIM
	Conditional Diffusion Model
	Predict Velocity

	Experiments
	Conclusion
	References
	Appendix
	Markov property is equivalent to adding noise independently
	q(x_0) \approx p(x_0)
	SDE
	Seperate L

